学术咨询服务,正当时...... 期刊天空网是可靠的职称论文与著作成果学术咨询服务平台!!!

大类学科: 不限 医学 生物 物理 化学 农林科学 数学 地学天文 地学 环境科学与生态学 综合性期刊 管理科学 社会科学 查看全部热门领域

中科院分区: 不限 1区 2区 3区 4区

期刊收录: 不限 SCI SCIE

Journal of Hyperbolic Differential Equations

Journal of Hyperbolic Differential Equations
简称:J HYPERBOL DIFFER EQ
ISSN:0219-8916
EISSN:0219-8916
研究方向:数学-物理:数学物理
自引率:18.20%
五年影响因子:1
JCI期刊引文指标 :0.41
h-index:20
Gold OA文章占比:0.00%

论文指导 投稿指导

快速获取服务项目:
1.免费获取期刊信息 2.推荐期刊 3.稿件评估 4.快速录用指导 5.文章质量提升

Journal of Hyperbolic Differential Equations英文简介

This journal publishes original research papers on nonlinear hyperbolic problems and related topics, of mathematical and/or physical interest. Specifically, it invites papers on the theory and numerical analysis of hyperbolic conservation laws and of hyperbolic partial differential equations arising in mathematical physics. The Journal welcomes contributions in:
Theory of nonlinear hyperbolic systems of conservation laws, addressing the issues of well-posedness and qualitative behavior of solutions, in one or several space dimensions.
Hyperbolic differential equations of mathematical physics, such as the Einstein equations of general relativity, Dirac equations, Maxwell equations, relativistic fluid models, etc.
Lorentzian geometry, particularly global geometric and causal theoretic aspects of spacetimes satisfying the Einstein equations.
Nonlinear hyperbolic systems arising in continuum physics such as: hyperbolic models of fluid dynamics, mixed models of transonic flows, etc.
General problems that are dominated (but not exclusively driven) by finite speed phenomena, such as dissipative and dispersive perturbations of hyperbolic systems, and models from statistical mechanics and other probabilistic models relevant to the derivation of fluid dynamical equations.
Convergence analysis of numerical methods for hyperbolic equations: finite difference schemes, finite volumes schemes, etc.

IF值(影响因子)趋势图

自引率趋势图


专家解答 SCI EI SSCI SCOPUS

对接专家,全程指导

免费咨询 >